Crystal structure of a complex between human spliceosomal cyclophilin H and a U4/U6 snRNP-60K peptide.
نویسندگان
چکیده
The spliceosomal cyclophilin H is a specific component of the human U4/U6 small nuclear ribonucleoprotein particle, interacting with homologous sequences in the proteins U4/U6-60K and hPrp18 during pre-mRNA splicing. We determined the crystal structure of the complex comprising cyclophilin H and the cognate domain of U4/U6-60K. The 31 amino acid fragment of U4/U6-60K is bound to a region remote from the cyclophilin active site. Residues Ile118-Phe121 of U4/U6-60K expand the central beta-sheet of cyclophilin H and the side-chain of Phe121 inserts into a hydrophobic cavity. Concomitantly, in the crystal the cyclophilin H active site is occupied by the N terminus of a neighboring cyclophilin H molecule in a substrate-like manner, indicating the capacity of joint binding to a substrate and to U4/U6-60K. Free and complexed cyclophilin H have virtually identical conformations suggesting that the U4/U6-60K binding site is pre-shaped and the peptidyl-prolyl-cis/trans isomerase activity is unaffected by complex formation. The complex defines a novel protein-protein interaction mode for a cyclophilin, allowing cyclophilin H to mediate interactions between different proteins inside the spliceosome or to initiate from its binding platforms isomerization or chaperoning activities.
منابع مشابه
Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles.
The U4/U6.U5 tri-snRNP is a key component of spliceosomes. By using chemical reagents and RNases, we performed the first extensive experimental analysis of the structure and accessibility of U4 and U6 snRNAs in tri-snRNPs. These were purified from HeLa cell nuclear extract and Saccharomyces cerevisiae cellular extract. U5 accessibility was also investigated. For both species, data demonstrate t...
متن کاملHuman U4/U6.U5 and U4atac/U6atac.U5 tri-snRNPs exhibit similar protein compositions.
In the U12-dependent spliceosome, the U4atac/U6atac snRNP represents the functional analogue of the major U4/U6 snRNP. Little information is available presently regarding the protein composition of the former snRNP and its association with other snRNPs. In this report we show that human U4atac/U6atac di-snRNPs associate with U5 snRNPs to form a 25S U4atac/U6atac.U5 trimeric particle. Comparativ...
متن کاملDetection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are required for pre-mRNA splicing throughout the nucleoplasm, yet snRNPs also concentrate in Cajal bodies (CBs). To address a proposed role of CBs in snRNP assembly, we have used fluorescence resonance energy transfer (FRET) microscopy to investigate the subnuclear distribution of specific snRNP intermediates. Two distinct complex...
متن کاملOrganization of core spliceosomal components U5 snRNA loop I and U4/U6 Di-snRNP within U4/U6.U5 Tri-snRNP as revealed by electron cryomicroscopy.
In eukaryotes, pre-mRNA exons are interrupted by large noncoding introns. Alternative selection of exons and nucleotide-exact removal of introns are performed by the spliceosome, a highly dynamic macromolecular machine. U4/U6.U5 tri-snRNP is the largest and most conserved building block of the spliceosome. By 3D electron cryomicroscopy and labeling, the exon-aligning U5 snRNA loop I is localize...
متن کاملU4/U5/U6 snRNP recognizes the 5' splice site in the absence of U2 snRNP.
Using an in vitro system in which a 5' splice site (5'SS) RNA oligo (AAG decreases GUAAGUAdT) is capable of inducing formation of U2/U4/U5/U6 snRNP complex we show that this oligo specifically binds to U4/U5/U6 snRNP and cross-links to U6 snRNA in the absence of U2 snRNP. Moreover, 5'SS RNA oligo bound to U4/U5/U6 snRNP is chased to U2/U4/U5/U6 snRNP complex upon addition of U2 snRNP. Recogniti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular biology
دوره 331 1 شماره
صفحات -
تاریخ انتشار 2003